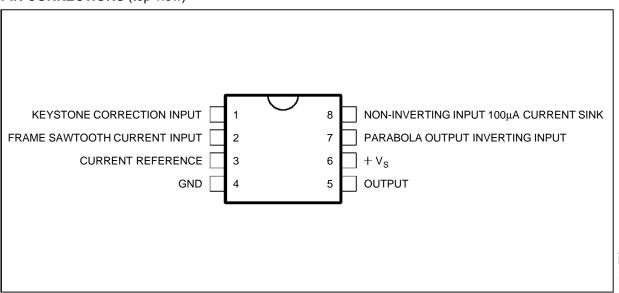
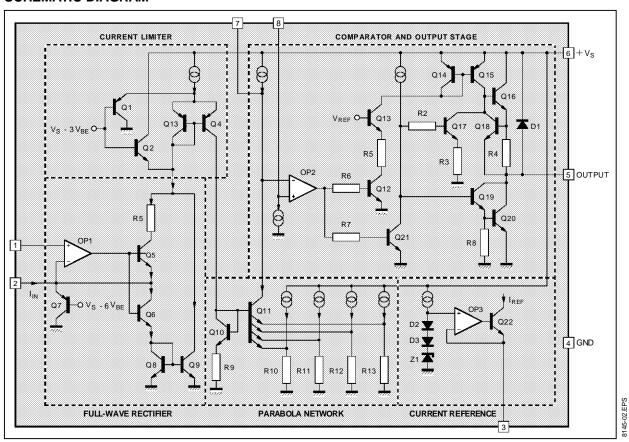


TDA8145

TV EAST/WEST CORRECTION CIRCUIT FOR SQUARE TUBES


- LOW DISSIPATION
- SQUARE GENERATOR FOR PARABOLIC CURRENT SPECIALLY DESIGNED FOR SQUARE C.R.T. CORRECTION
- EXTERNAL KEYSTONE ADJUSTMENT (symmetry of the parabola)
- INPUT FOR DYNAMIC FIELD CORRECTION (beam current change)
- STATIC PICTURE WIDTH ADJUSTMENT
- PULSE-WIDTH MODULATOR
- FINAL STAGE D-CLASS WITH ENERGY REDELIVERY
- PARASITIC PARABOLA SUPPRESSION, DURING FLYBACK TIME OF THE VERTICAL SAWTOOTH

DESCRIPTION


The TDA8145 is a monolithic integrated circuit in a 8 pin minidip plastic package designed for use in the square C.R.T. east-west pin-cushion correction by driving a diode modulator in TV and monitor applications.

PIN CONNECTIONS (top view)

July 1993 1/5

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	35	V
Is	Supply Current	500	mA
P _{tot}	Power Dissipation at T _{amb} = 50 °C	500	mW
T _{stg} , T _j	Storage and Junction Temperature	- 25 to 150	°C

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{th (j-c)}	Thermal Resistance Junction-ambient	Max.	100	°C/W
R _{th (j-a)}	Thermal Resistance Junction-pin 4	Max.	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $V_{S} = 26V$, $V_{fr} = 0$, S1 and S2 in "a" position, refer to the test circuit unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		17	24	30	V
Is	Supply Current			4.5	7	mA
V_{ref}	Internal Reference Voltage		7.6	8.0	8.8	V
- I _{ref}	Internal Reference Current	V _{ref} /R3		0.73		mA
V _{7(A)} (*)	Pin 7 Output Voltage	$I_{fr} = 0 \mu A$	15.3	16.0	16.7	V
V _{7(B)} (*)	Pin 7 Output Voltage	$I_{fr} = 30 \mu\text{A}$		15		V

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $V_{S} = 26V$, $V_{fr} = 0$, S1 and S2 in "a" position, refer to the test circuit unless otherwise specified) (continued)

Symbol	Parameter	Test C	onditions		Min.	Тур.	Max.	Unit
K ₁	Parabola Coefficient (see Figure 2)	$K_1 = \frac{V_{7A} - V_{7B}}{V_{7A} - V_{7C}}$				0.26		
K2	Parabola Coefficient (see Figure 2)	$K_2 = \frac{V_{7A} - V_{7C}}{V_{7A} - V_{7D}}$				0.70		
ΔV ₇ (*)		$\Delta V_7 = V_{7E} - V_{7F}$			- 40		40	mV
l ₈	Current Source	$S1 \rightarrow b$				100		μΑ
VSATL	Saturation Voltage	$I_0 = 400 \text{ mA Sink}$	$\text{S2} \rightarrow \text{b}$			1	2	V
Vsath	Saturation Voltage	I _o = 100 mA Source	$S2 \to c$	$S1 \to b$		0.8	1.5	V
V _F	Forward Voltage	I _o = 400 mA	$S2 \to d$	$S1 \rightarrow b$		1.2	1.7	V
I _{fr}	Frame Sawtooth Current	$V_{fr} = 6.6 V_{pp}$				66		μΑ

Figure 1 : Test Circuit

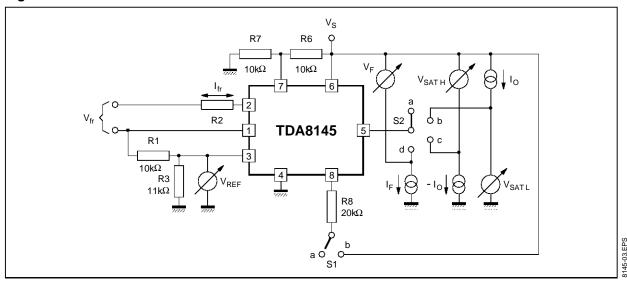
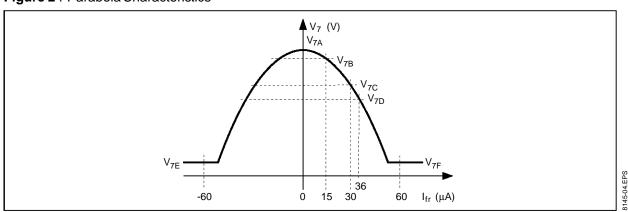



Figure 2: Parabola Characteristics

Line Transformer (L.T.) L1 10mH Pin-cushion adjustment R3 RT2) 47kΩ $4.7k\Omega$ 18kΩ <u>66μ</u>Αpp Pin 1 **TDA8145** 6 Voltage C2 100nF RT1 R2 $12k\Omega$ Keystone 100kΩ Adj. 1kΩ Hfly O-H. Width from L.T. R5 RT3 \

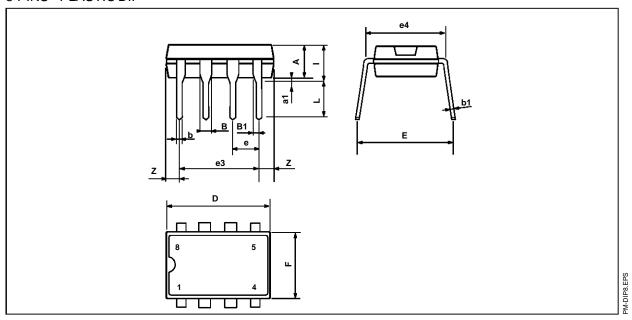
APPLICATION CIRCUIT WITH KEYSTONE CORRECTION

CIRCUIT OPERATION (see the schematic diagram)

A differential amplifier OP1 is driven by a vertical frequency sawtooth current of $\pm~33\mu A$ which is produced via an external resistor from the sawtooth voltage. The non–inverting input of this amplifier is connected with a reference voltage corresponding to the DC level of the sawtooth voltage. This DC voltage should be adjustable for the keystone correction. The rectified output current of this amplifier drives the parabola network which provides a parabolic output current.

This output current produces the corresponding voltage due to the voltage drop across the external resistor at pin 7.

If the input is overmodulated (> 40µA) the internal


current is limited to $40\mu A$. This limitation can be used for suppressing the parasitic parabolic current generated during the flyback time of the frame sawtooth.

A comparator OP2 is driven by the parabolic current. The second input of the comparator is connected with a horizontal frequency sawtooth voltage the DC level of which can be changed by the external circuitry for the adjustment of the picture width.

The horizontal frequency pulse—width modulated output signal drives the final stage. It consists of a class D push—pull output amplifier that drives, via an external inductor, the diode modulator.

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
Difficusions	Min.	Тур.	Max.	Min.	Тур.	Max.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

